**Author**: Per Christian Hansen

**Publisher:**JHU Press

**ISBN:**1421408589

**Category :**Mathematics

**Languages :**en

**Pages :**328

**Book Description**

Full Book for Read and Download

**Book Description**

Included are; an overview of computational methods together with their properties and advantages; topics from statistical regression analysis that help readers to understand and evaluate the computed solutions; many examples that illustrate the techniques and algorithmsLeast Squares Data Fitting with Applications can be used as a textbook for advanced undergraduate or graduate courses and professionals in the sciences and in engineering.

"Real and complex exponential data fitting is an important activity in many different areas of science and engineering, ranging from Nuclear Magnetic Resonance Spectroscopy and Lattice Quantum Chromodynamics to Electrical and Chemical Engineering, Vision a"

Included are; an overview of computational methods together with their properties and advantages; topics from statistical regression analysis that help readers to understand and evaluate the computed solutions; many examples that illustrate the techniques and algorithmsLeast Squares Data Fitting with Applications can be used as a textbook for advanced undergraduate or graduate courses and professionals in the sciences and in engineering.

Recent developments in theory, algorithms, and applications in optimization and control are discussed in this proceedings, based on selected talks from the ‘Optimization Control and Applications in the Information Age’ conference, organized in honor of Panos Pardalos’s 60th birthday. This volume contains numerous applications to optimal decision making in energy production and fuel management, data mining, logistics, supply chain management, market network analysis, risk analysis, and community network analysis. In addition, a short biography is included describing Dr. Pardalos’s path from a shepherd village on the high mountains of Thessaly to academic success. Due to the wide range of topics such as global optimization, combinatorial optimization, game theory, stochastics and programming contained in this publication, scientists, researchers, and students in optimization, operations research, analytics, mathematics and computer science will be interested in this volume.

This is the first textbook that allows readers who may be unfamiliar with matrices to understand a variety of multivariate analysis procedures in matrix forms. By explaining which models underlie particular procedures and what objective function is optimized to fit the model to the data, it enables readers to rapidly comprehend multivariate data analysis. Arranged so that readers can intuitively grasp the purposes for which multivariate analysis procedures are used, the book also offers clear explanations of those purposes, with numerical examples preceding the mathematical descriptions. Supporting the modern matrix formulations by highlighting singular value decomposition among theorems in matrix algebra, this book is useful for undergraduate students who have already learned introductory statistics, as well as for graduate students and researchers who are not familiar with matrix-intensive formulations of multivariate data analysis. The book begins by explaining fundamental matrix operations and the matrix expressions of elementary statistics. Then, it offers an introduction to popular multivariate procedures, with each chapter featuring increasing advanced levels of matrix algebra. Further the book includes in six chapters on advanced procedures, covering advanced matrix operations and recently proposed multivariate procedures, such as sparse estimation, together with a clear explication of the differences between principal components and factor analyses solutions. In a nutshell, this book allows readers to gain an understanding of the latest developments in multivariate data science.

A popular way to assess the “effort” needed to solve a problem is to count how many evaluations of the problem functions (and their derivatives) are required. In many cases, this is often the dominating computational cost. Given an optimization problem satisfying reasonable assumptions—and given access to problem-function values and derivatives of various degrees—how many evaluations might be required to approximately solve the problem? Evaluation Complexity of Algorithms for Nonconvex Optimization: Theory, Computation, and Perspectives addresses this question for nonconvex optimization problems, those that may have local minimizers and appear most often in practice. This is the first book on complexity to cover topics such as composite and constrained optimization, derivative-free optimization, subproblem solution, and optimal (lower and sharpness) bounds for nonconvex problems. It is also the first to address the disadvantages of traditional optimality measures and propose useful surrogates leading to algorithms that compute approximate high-order critical points, and to compare traditional and new methods, highlighting the advantages of the latter from a complexity point of view. This is the go-to book for those interested in solving nonconvex optimization problems. It is suitable for advanced undergraduate and graduate students in courses on advanced numerical analysis, data science, numerical optimization, and approximation theory.

Mathematical optimization encompasses both a rich and rapidly evolving body of fundamental theory, and a variety of exciting applications in science and engineering. The present book contains a careful selection of articles on recent advances in optimization theory, numerical methods, and their applications in engineering. It features in particular new methods and applications in the fields of optimal control, PDE-constrained optimization, nonlinear optimization, and convex optimization. The authors of this volume took part in the 14th Belgian-French-German Conference on Optimization (BFG09) organized in Leuven, Belgium, on September 14-18, 2009. The volume contains a selection of reviewed articles contributed by the conference speakers as well as three survey articles by plenary speakers and two papers authored by the winners of the best talk and best poster prizes awarded at BFG09. Researchers and graduate students in applied mathematics, computer science, and many branches of engineering will find in this book an interesting and useful collection of recent ideas on the methods and applications of optimization.

This book contains fifty-eight revised and extended research articles written by prominent researchers participating in the Advances in Engineering Technologies and Physical Science conference, held in London, U.K., 4-6 July, 2012. Topics covered include Applied and Engineering Mathematics, Computational Statistics, Mechanical Engineering, Bioengineering, Internet Engineering, Wireless Networks, Knowledge Engineering, Computational Intelligence, High Performance Computing, Manufacturing Engineering, and industrial applications. The book offers the state of art of tremendous advances in engineering technologies and physical science and applications, and also serves as an excellent reference work for researchers and graduate students working on engineering technologies and physical science and applications.

This book is a collection of the most recent approaches that combine metaheuristics and machine learning. Some of the methods considered in this book are evolutionary, swarm, machine learning, and deep learning. The chapters were classified based on the content; then, the sections are thematic. Different applications and implementations are included; in this sense, the book provides theory and practical content with novel machine learning and metaheuristic algorithms. The chapters were compiled using a scientific perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics and is useful in courses on Artificial Intelligence, Advanced Machine Learning, among others. Likewise, the book is useful for research from the evolutionary computation, artificial intelligence, and image processing communities.